

a **MICROCHIP** company

PRODUCTIZATION OF 3.3 KV & 700 V SILICON CARBIDE MOSFETS

Objectives: Proposed efforts would focus on commercialization of advanced 700 V SiC MOSFETs that can compete with Si superjunction products and 3.3 kV MOSFETs, including reliability assessments and production scale-up. Build state-of-the-art reference designs to gain adoption in auto and industrial markets.

Task No. BP5-2-20.A PI: Dr. Avinash Kashyap Email: Avinash.Kashyap@microchip.com Phone: 541-280-6267

SiC Applications

Lower Power Higher frequer Higher junctio

	Easier cooling
\rightarrow	Downsized system
	Higher Reliability

Markets		Applications	High Temperature	High Frequency	Small, Light System	Low Loss, Efficiency
Commercial Avionics		Actuation Air Conditioning Power Distribution	x	×	×	x
Defense Oil drilling	JSF	Motor Drives Aux. Power Supplies	x	x	x	×
Transportation Automotive		H/EV Powertrain EV Battery Charger DC/DC Converter Energy Recovery	x		x	х
Solar Energy	A	PV inverter		×	x	x
Wind turbine	The	Inverter		x	x	
Industrial		Motor drives Welding UPS, SMPS Induction Heating		×	x	x
Medical		MRI power supply X-Ray power supply		x	x	x

WBG TECHNOLOGY IMPACT

1. WBG Benefits: Inherently faster switching operates at higher frequencies while generating lower power losses, for higher efficiency. High ruggedness provides pathway for WBG to enter mission-critical applications such as T&D and traction. 2. Markets: Automotive, Transmission & Distribution, High Power Traction, High Performance Industrial, Aerospace & Defense.

3. Commercialization: 12 months.

4. Market Penetration: Superjunction Si devices (<=650 V) comprise a significant portion of the power semiconductor market is ripe for displacement if the economics of WBG work out. HV SiC devices replacing current Si IGBT solutions require ≥ 2 kV and could form a significant part of the WBG market share.

ACCOMPLISHMENTS/OUTCOMES

1. Impact on the cost of WBG compared to Silicon: Using 6" Si CMOS fab drastically reduces \$/Amp, commercial foundry reduces defects & increases yield, R&D cycle times reduced

2. Potential for Job Creation & Economic impact: US based design & fabrication keeps and creates high-tech jobs onshore, increasing US competitiveness in semiconductors

3. Technology maturity : Rapid entry of 3.3 kV SiC devices opens up new markets for WBG

PowerAmerica

For Public Release

