

WIDE BANDGAP DEVICES & APPLICATIONS VIRTUAL SHORT COURSE

NOVEMBER 16-17, 2021

The course will be presented online in real-time with opportunity for Q&A with the instructors.

COURSE BENEFITS

Enable power electronics engineers to incorporate SiC and GaN technology into products and systems, and fully utilize the benefits of this technology.

COURSE OBJECTIVES

Provide the basics of SiC and GaN power electronics technology. Participants will gain proficiency through instruction on WBG fundamentals and application-specific case studies.

POWER ELECTRONICS APPLICATIONS ENGINEERS

POWER DEVICE ENGINEERS

SiC & GaN TECHNICAL MARKETING PROFESSIONALS POWER ELECTRONICS BUSINESS & PRODUCT LINE MANAGERS

Sandeep Bahl, PhD Distinguished Member of Technical Staff, Texas Instruments

Elif Balkas, PhD R&D Manager-Materials, Wolfspeed

Tushar Dhayagude VP of Field Applications and Technical Sales, Transphorm

Peter Friedrichs, PhD Vice President, SiC, Infineon

INSTRUCTORS

WHO SHOULD ATTEND

Don Gajewski, PhD Manager of Reliability and Failure Analysis, Wolfspeed

Iqbal Husain, PhD Professor, North Carolina State University

David Levett, PhD Power Electronics Design and Applications Engineer, Infineon Technologies

Alan Mantooth, PhD Professor, University of Arkansas **Michael MacMillan, PhD** Vice President of Worldwide Sales and Marketing, Epiluvac

Burak Ozpineci, PhD Section Head, Vehicle and Mobility Systems Research, Oak Ridge National Lab

Victor Veliadis, PhD Executive Director and CTO, PowerAmerica

Fred Wang, PhD Professor, University of Tennessee, Knoxville

For questions, contact Rogelio Sullivan at rasulliv@ncsu.edu.

COURSE FEE

\$100 Student \$300 PowerAmerica member \$500 PowerAmerica non-member

LOCATION

Link to join the live course will be sent to registered attendees. **REGISTRATION ONLINE AT:** *PowerAmericalnstitute.org/shortcourse* **SCHEDULE NOV. 16**, 11 a.m.–5:30 p.m. *Eastern Time* **NOV. 17**, 11 a.m.–5:30 p.m. *Eastern Time*

WIDE BANDGAP DEVICES & APPLICATIONS VIRTUAL SHORT COURSE

COURSE OUTLINE

SiC Power Device Technology and System Benefits

- Low cost wafer technologies
- Designing reliable power transistors
- Chip packaging and smart driving ecosystem
- System benefits and value propositions

SiC Power Devices: Volume Applications, Market Outlook and Introduction to Fabrication

- High volume applications
- Accelerating commercialization and the U.S. SiC foundry infrastructure
- Introduction to SiC power device fabrication

SiC Bulk Substrate: Advantages, Challenges and Solutions

- Crystal Growth
- Defects in SiC
- Substrate Processing: Surface Quality, Flatness
- > 200 mm R&D

Silicon Carbide Epitaxy for Beginners

- ▶ SiC epitaxy basics of growth
- Substrates
- Growth Parameters
- SiC epitaxy tools
- > Types of tools currently in use
- Next generation tools and techniques
- ► Characterization techniques and requirements for commercial epi
- Thickness and Doping Accuracy and Uniformity
- Defect types and control

SiC Power Device Reliability

- Intrinsic reliability failure mechanisms and models
- FIT rate based on field failure data and terrestrial neutron radiation
- Product level reliability
- Reliability for high voltage and high humidity environments
- Product qualification
- Industry consortia qualification standards development

Optimizing SiC MOSFET chip and package design to match specific application requirements

- Tradeoffs and compromises for chip designers
- Design considerations for different applications
- Applications to be discussed: aviation, solar, servo drives, traction, energy storage/chargers and automotive

Power Electronics for Electric Vehicles

- ▶ Electric Traction Drives for passenger Electric Vehicles
- Extremely fast wired and wireless chargers
- ▶ Gaps, challenges, and opportunities
- Capacitor, power module, and heat sinks
- Power Electronics Needs for medium and heavy duty vehicles

WBG Power Electronics Driving High-Speed Electric Machines for Electric Vehicles

- Powertrain for electric vehicles
- ▶ WBG traction inverter for high-speed electric machines
- ▶ WBG circuit design for high frequency, high temperature operation and EMI suppression
- Interaction of WBG drives with machines
- System benefits of WBG insertion
- Inverter testing and e-motor emulation

GaN Power Devices and Applications Reliability

- Motivation for the GaN FET
- The meaning of traditional qualification what does and does not carry over from Si reliability
- ▶ Intrinsic reliability of the GaN FET dynamic Ron & TDDB
- ► Achieving application-reliable GaN standardizing the approach (JEDEC JEP180)
- Surge robustness without avalanche

Electronic Packaging of Wide Bandgap Devices

- Basics of WBG power module packaging
- System level considerations for WBG power modules
- Advanced packaging technologies
- Power module design flow
- Case study of an integrated power module

High Voltage SiC-Based Power Conditioning System

- Development for Grid Applications
- 10 kV Device Characterization
- Driving and Protection
- Isolated Power Supply Control
- PCS Design and Testing
- Grid Supporting Function Validation

Application of 650V GaN in 45W to 10kW Power Levels

- ▶ GaN advancements and new applications in the past 5 years
- ▶ Applications in the 45W to 10kW range
- Approaches and topologies for each power segment and market need
- Power levels and topologies and the pros and cons of GaN and Si MOSFETs in various applications.

REGISTRATION ONLINE AT: PowerAmericaInstitute.org/shortcourse