SiC Power Device Reliability Power America WBG Short Course

Wolfspeed DONALD A. GAJEWSKI
DIRECTOR, RELIABILITY ENGINEERING & FAILURE
ANALYSIS
NOVEMBER 16, 2021

BIO

Dr. Donald A. Gajewski is the Director of the Reliability Engineering & Failure Analysis Department for Wolfspeed, a Cree Company, covering GaN-on-SiC HEMT-MMICs for RF and microwave applications, SiC power MOSFETs, SiC Schottky power diodes, and SiC power modules. He has been in the semiconductor industry reliability profession for 21 years, with previous tenures at Nitronex, Freescale and Motorola. He has experience with other semiconductor technologies including highly integrated silicon CMOS including SiGe HBT and SmartMOS; magnetoresistive random access memory (MRAM); and advanced packaging including flip-chip and redistributed chip package (RCP). He completed a National Research Council Postdoctoral Research Fellowship at the National Institute of Standards and Technology, in the Semiconductor Electronics Division, in Gaithersburg, MD. He earned the Ph.D. in physics from the University of California, San Diego, partially under the auspices of a National Science Foundation Fellowship.

JOURNEY / MILESTONES

Timeline

Cree Founded

1987

Released world's first commercial SiC wafers

1991

→ Nasdag 1993

Listed on

first **GaN HEMT** on SiC, with record power density

Created industry's

1998

Demonstrated 4-inch SiC wafer/ **1999**

Demonstrated industry's first GaN HEMT MMIC. grown on semiinsulating SiC substrate

2000

Released our first 600V commercial SiC JBS Schottky diode

2002

2014

Introduced industry's first 1200V SiC 25mΩ

MOSFET Introduced industry's first 1700V SiC halfbridge module

Became Department of Defense Trusted GaN Foundry

2012

Released newgeneration 50V GaN HEMT technology Introduced our first 1200V SiC

half-bridge

module

2011

Released industry's first SiC **MOSFET**

2010

Developed highquality 150mm SiC substrates

Released industry's first 1700V SiC Schottky diode

2009

Demonstrated record-efficiency **GaN HEMT Doherty** amplifier with digital pre-

distortion

sample release of 90W **GaN HEMT**

2008

Announced

2007

Commercial release of 100mm, zeromicropipe SiC substrates

2006

Released industry's first 1200V SiC Schottky diode

2021

enables

WolfPACK™

module family

production of high

growth mid-power

accelerated

technologies

2015

Exceeded 2 trillion field hours **power**

Introduced industry's first 900V SiC MOSFET Acquired APEI

2016

Introduced the industry's first 1000V SiC MOSFET

Demonstrated 200mm SiC wafer

Released market's highest power, singleended GaN RF transistor >> for L-Band Radar

2017

Introduced a SiC 900V, $10m\Omega$ MOSFET for EV drive trains, enabling reduction of EV drive train inverter losses by 78%

Introduced SiC 1200V, 75mΩ MOSFET with industry's lowest figure of merit

2018

Acquired Infineon's RF Power business

2019

Announce **next generation** of SiC diodes for renewable energy **EV** applications

2020

New **650v MOSFETs** offer industry leading efficiency to enable the next generation of EVs, data centers and solar innovations

opening

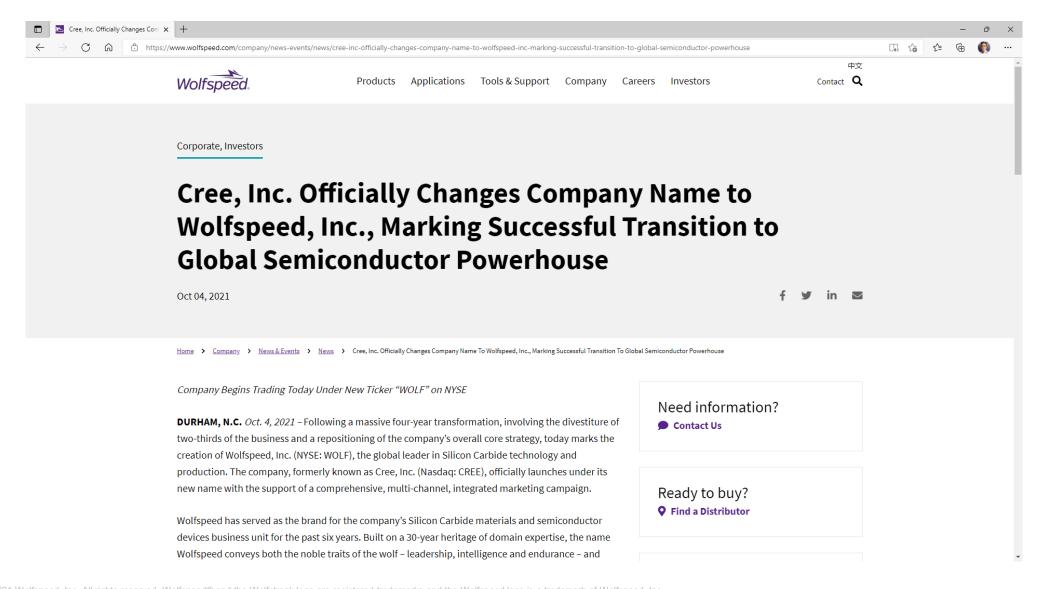
New Wolfspeed

Mohawk

Valley

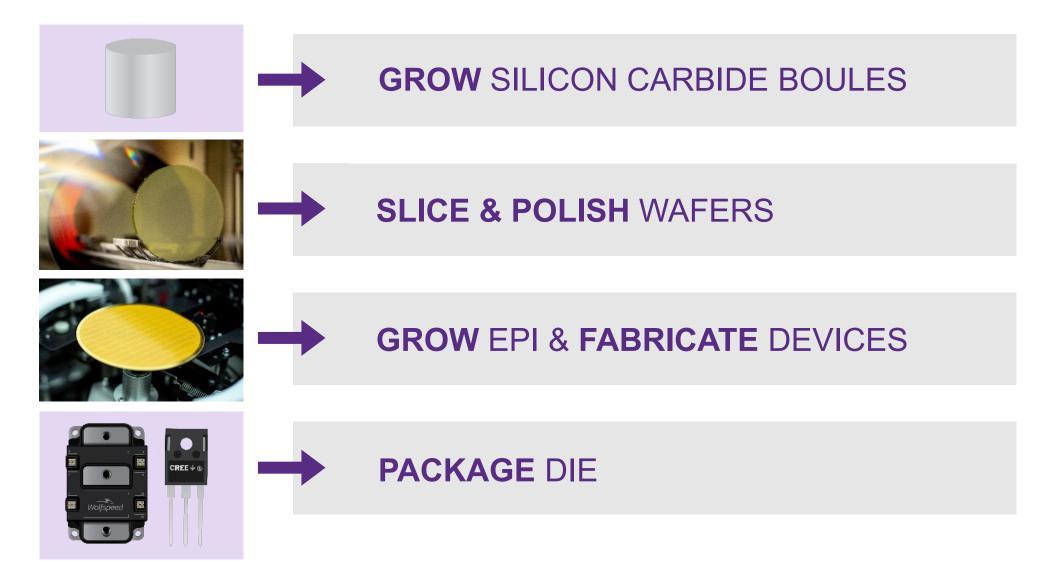
INVESTMENT FOR SIC GROWTH

Expanding Capacity for Silicon Carbide


RENDERING OF THE MOHAWK VALLEY FAB
CURRENTLY UNDER CONSTRUCTION

At Cree | Wolfspeed, we are driving the industry transition from silicon to silicon carbide. To meet the increasing demand for our groundbreaking Wolfspeed technology that supports the growing electric vehicle (EV), 4G/5G mobile and industrial markets, we announced last fall that the company is establishing a silicon carbide corridor on the East Coast of the United States.

We are currently constructing the world's largest silicon carbide fabrication in Marcy, New York. This brand new, state-of-the-art power and RF wafer fabrication facility will be automotive-qualified and 200mm-capable. It is complemented by our mega materials factory expansion currently underway at our Durham, North Carolina headquarters. The new fabrication facility will dramatically increase capacity for our Wolfspeed silicon carbide and GaN business and will be a bigger, highly-automated factory with greater output capability.


WOLFSPEED

New name!

THE WOLFSPEED ADVANTAGE

Vertically-Integrated SiC and GaN Manufacturer

ADOPTION OF WOLFSPEED SIC INTO VARIOUS APPLICATIONS

It's all around

PV Inverters

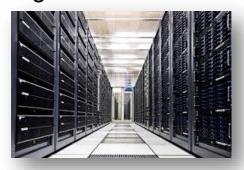
Battery Chargers for EV

Server Power Supply

Traction

Shipping in high volume

- MOSFETs
- Diodes
- Modules


Shipping in high volume

- MOSFETs
- Diodes
- Modules

Shipping in high volume

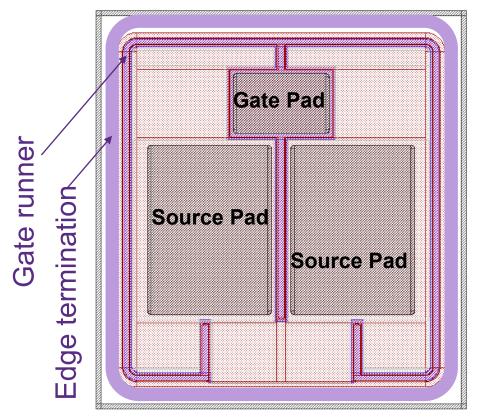
- MOSFETs in evaluation
- Diodes shipping in high volume

Shipping in volume

SiC Modules

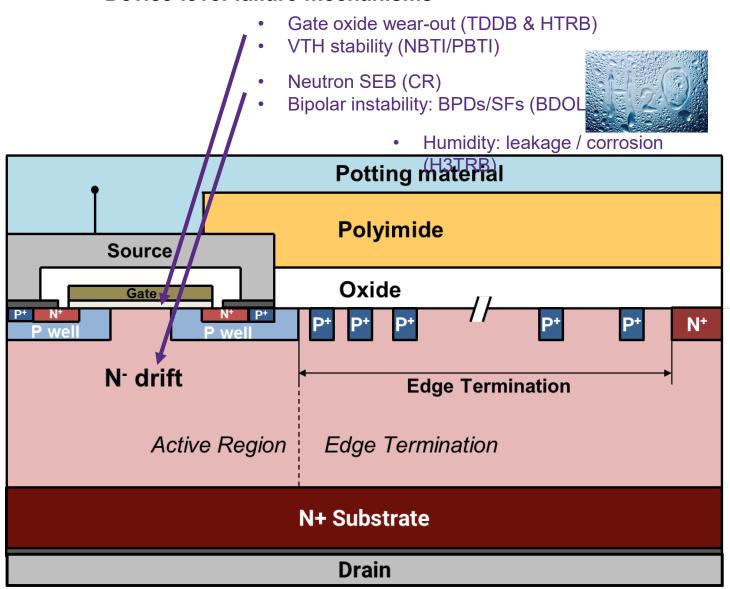
ABSTRACT

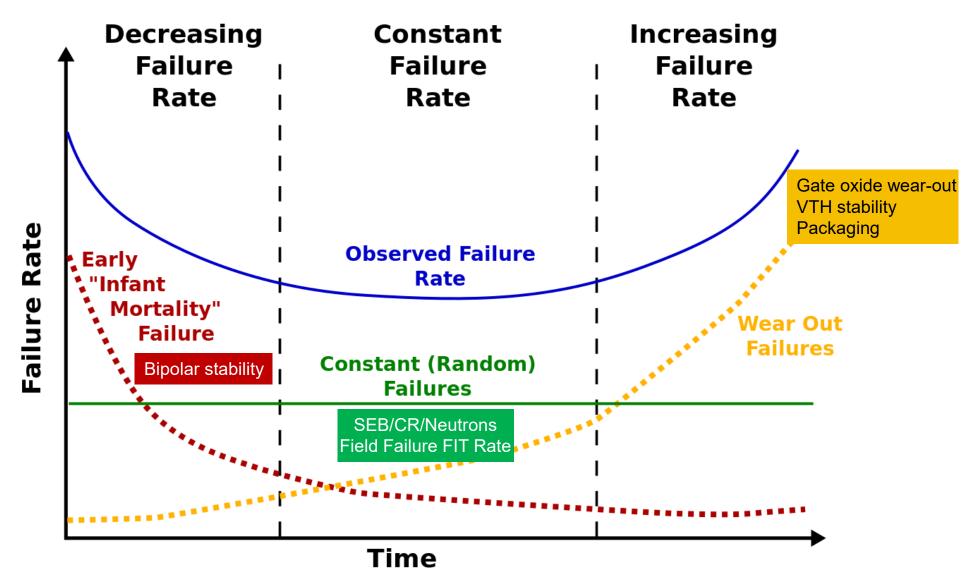
SiC power devices offer performance advantages over competing Si-based power devices, due to the wide bandgap and other key materials properties of 4H-SiC. For example, SiC can more easily be used to fabricate MOSFETs with very high voltage ratings (up to 10 kV), and with lower switching losses. The reliability of SiC power devices is excellent and has continued to improve due to continuing advancements in SiC substrate quality, epitaxial growth capabilities, and device processing. This has enabled the continually accelerating growth of SiC power device commercial adoption. I will review the wear-out mechanisms and intrinsic reliability performance of power SiC devices as characterized by time-dependent dielectric breakdown (TDDB), accelerated life test high temperature reverse bias (ALT-HTRB), bias/temperature instability (BTI), terrestrial neutron exposure, and power cycling. I will review failure mechanisms that have been characterized and addressed through technological advances. I will show qualification data on a wide variety of product families, including discrete devices up to 50 A rated current. Finally, I will show field return data that demonstrates less than 5 FIT (fails per billion device hours) for commercially produced SiC MOSFETs and Schottky diodes, with over 2 trillion device field hours.


GLOSSARY

- ALT-HTRB: accelerated life test HTRB
- BDOL: body diode operating life
- BPDs: basal plane dislocations
- BTI: bias-temperature instability
- NBTI: negative-BTI
- PBTI: positive-BTI
- ELFR: early life failure rate
- HTGB: high temperature gate bias
- HTGS: high temperature gate switching
- HTRB: high temperature reverse bias
- HV-H3TRB / THB (synonymous): high-voltage high humidity, high temperature reverse bias / temperature-humidity bias
- MTTF: median time to failure
- SEB: single event burn-out
- SFs: stacking faults
- TDDB: time-dependent dielectric breakdown
- V_{TH}, V_{qs(th)}: threshold voltage
- WBG: wide bandgap

OUTLINE


- MOSFET salient features and device-level failure mechanisms
- Reliability 101
- Packaging reliability
- Product qualification
- Field reliability
- Industry-wide consortia guidelines and standards


SIC MOSFET SALIENT FEATURES

Drain is the backside of the chip

Device-level failure mechanisms

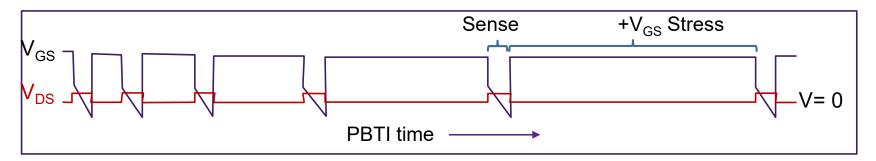
THRESHOLD VOLTAGE STABILITY

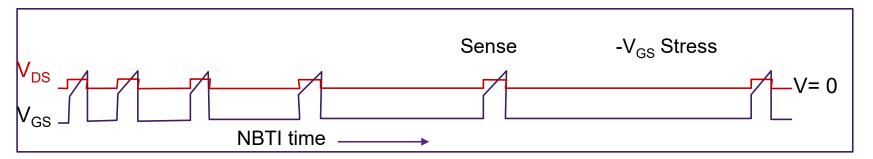
THRESHOLD VOLTAGE STABILITY (PBTI OR NBTI)

- Threshold voltage shift (ΔV_T) with time can change the on-state and/or blocking characteristics
- This can happen in Si or SiC MOSFETs
- ΔV_T relates to interface & oxide traps [1,2] (filling/emptying/creation): $\Delta V_T = q^*(\Delta N_{ox} + \Delta N_{IT})^*[(q^*T_{ox})/(K_{ox}^*\epsilon_o)]$
- ΔV_T of Si MOSFETs depends on MOS gate <u>electric field</u>, <u>temperature</u>, and <u>time</u> [1,2]:

$$\Delta V_T = A*exp(\gamma E_{ox})*exp(-E_A/kT)*t^n$$

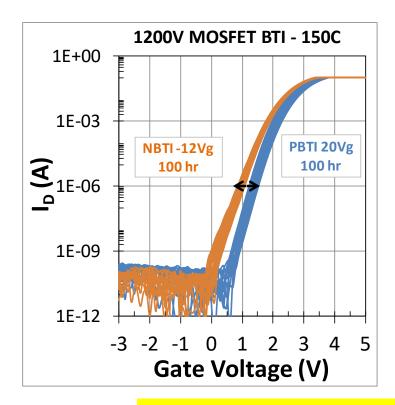
n typically ~0.2 – 0.25 for Si devices

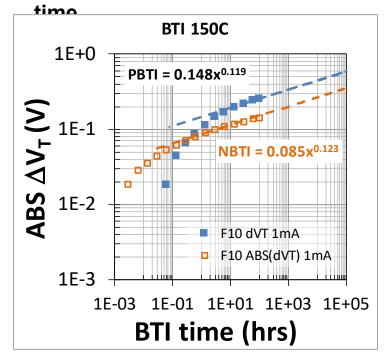

• SiC MOSFETs have more traps than Si MOSFETs -> V_T stability more of a concern


[1] J.H. Stathis and S. Zafar, "The negative bias temperature instability in MOS devices: A review," Microelectronics Reliability 46 (2006) pp. 270-286.

[2] D.K. Schroder, "Negative bias temperature instability: What do we understand?" Microelectronics Reliability 44 (2007) pp. 841-852.

PBTI, NBTI TEST PROCEDURE

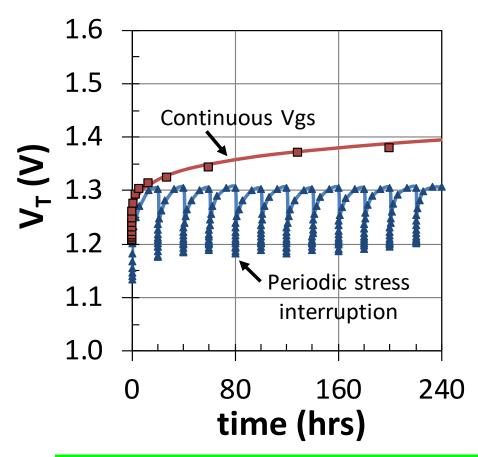

- Heat sample to test temperature, and hold T constant
- 1. Apply V_{GS} stress for given time (start with 0.1s), with $V_{S} = V_{DS} = 0 \text{ V}$
- 2. Sweep V_{GS} from stress V towards $V_{GS} = 0$ V, with $V_{S} = 0$ V and $V_{DS} = 0.1$ V
- 3. Repeat 2) and 3) using logarithmically increasing stress times
- 4. Extract V_T at a fixed current level to plot V_T versus time



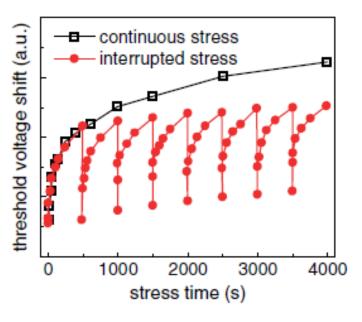
THRESHOLD VOLTAGE STABILITY (PBTI, NBTI) OF SIC POWER MOSFETS

- 1200V Gen3 13mohm SiC MOSFETs, Wolfspeed
- Recommended use V_{GS} is +15V/-4V
- Log time stress periods, V_{GS} sweep V_T sense

• Log-Log plot of ΔV_T vs <u>accelerated</u> BTI stress



- Power law exponent (~0.12) describes long-term V_T shift <u>at V_{GS} above use conditions</u>
- $\sim 0.3 \text{V V}_{\text{T}} \text{ shift in 1000hrs of +20V}_{\text{GS}} \text{ stress}$

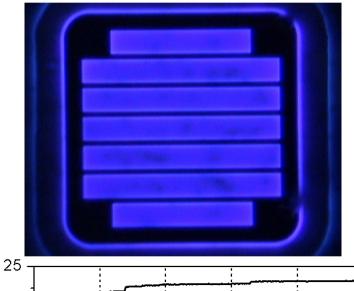

How much does V_T shift under interrupted bias / switching

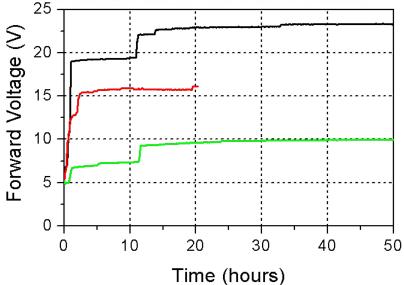
PBTI/NBTI RECOVERY/SWITCHING EFFECTS

900V 65mohm SiC MOSFETs (150°C,

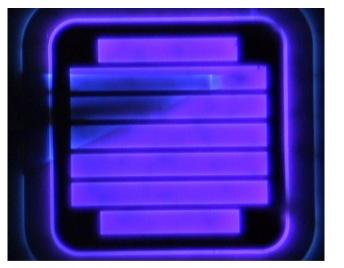
Threshold voltage 'recovery' also observed in Si MOSFETs

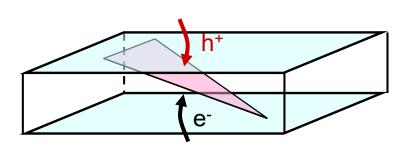
(in J.H. Stathis & S. Zafar, *Micro. Reliab.* 46 (2006))


Interrupted stress is closest to SiC MOSFET switching applications; greatly reduced ΔV_{T}


Lichtenwalner - Chaserwed tober, 2020

BIPOLAR / BODY DIODE STABILITY

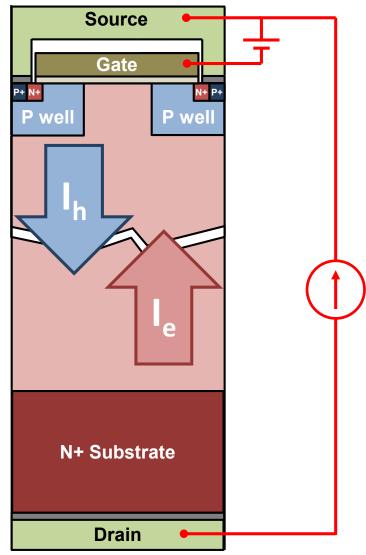

BIPOLAR / BODY DIODE STABILITY IN SiC


Gridded PiN Diode (ca 2006) EL image

Gridded PiN diode EL after forward stress

Basal plane dislocations

3rd quadrant electron/hole recombination


SiC stacking faults

Increased resistance and leakage

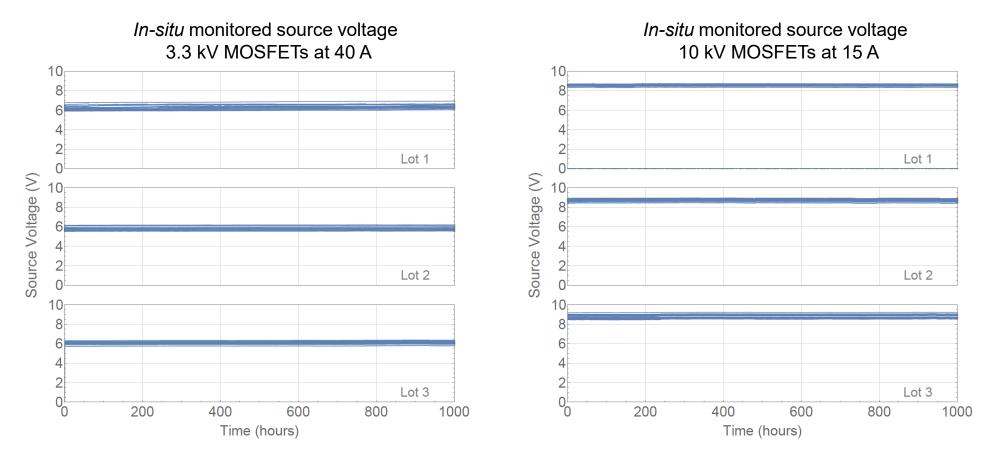
BODY DIODE OPERATING LIFE (BDOL): A UNIQUE TEST FOR SIC MOSFETS

- Bias gate into off-state (-V_{GS})
- Apply rated device current through body diode conduction path
- See if anything breaks in ### hours

BODY DIODE TEST SYSTEM DESIGNED FOR HIGH POWER

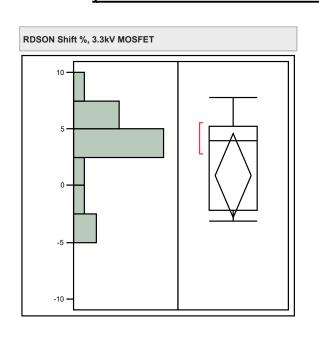
DISSIPATION

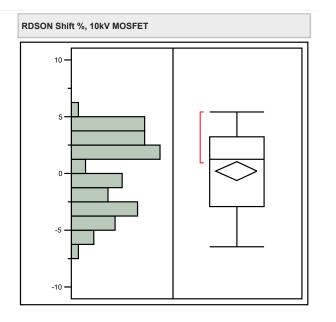
Body-Diode Stress Test Unit

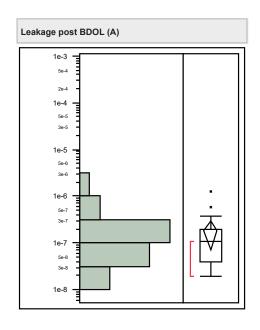


- 3.3 kV MOSFET T_J during testing: 140 °C
- 6 kW dissipated for qualification testing for 3.3kV MOSFET
- Separate circuit board to provide temperature monitoring and -5V gate drive

BDOL TESTING SHOWED COMPLETE STABILITY IN 3RD QUADRANT OPERATION

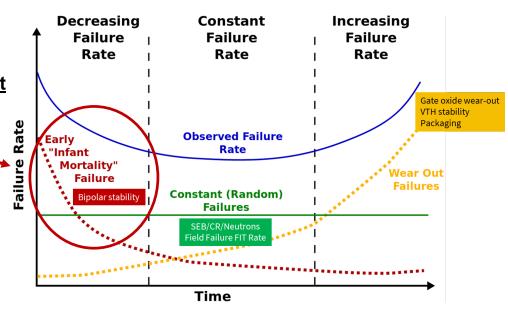



Zero failures in 1000 hours for 61 of 3.3 kV and 65 of 10 kV MOSFETs


BDOL: NO SHIFTS IN ANY DEVICE PARAMETER DETECTED POST-STRESS

(RDSON Post-RDSON Pre)/(RDSON Pre) * 100%, all lots

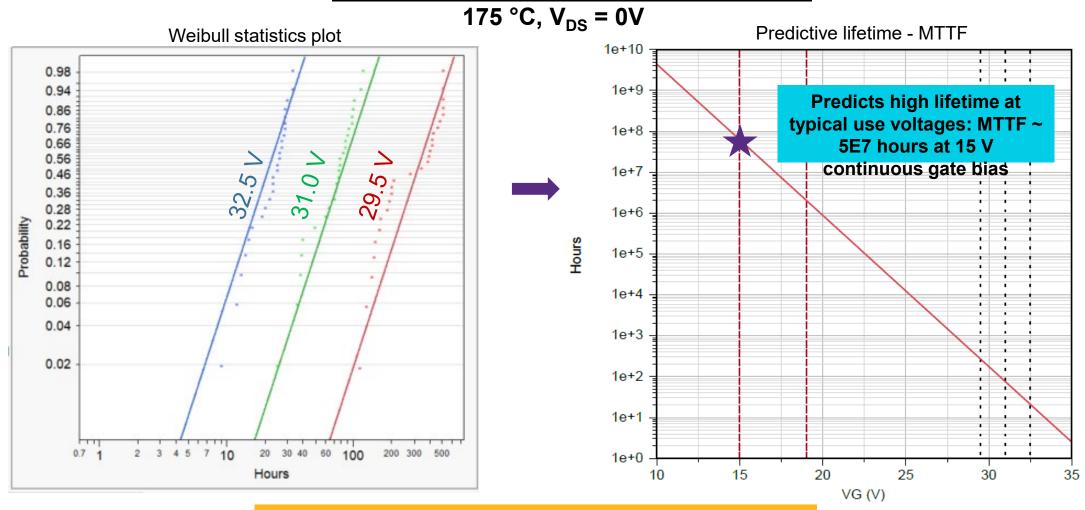
10 kV MOSFET leakage, one lot



Not shown:

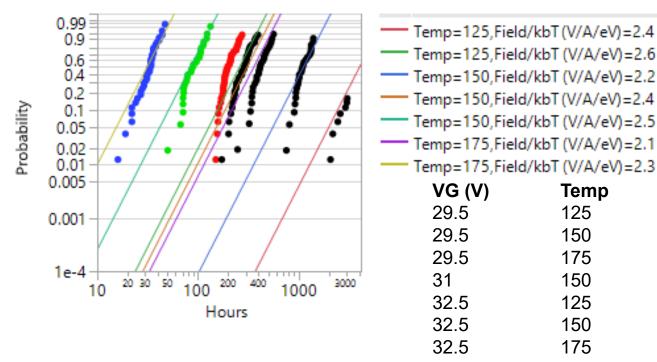
- No shift in MOSFET threshold voltage
- No shift in post-measured V_{SD} (body diode voltage) at room temperature

BIPOLAR STABILITY - RELIABILITY IMPLICATIONS


- IMPORTANT NOTE ABOUT BODY DIODE:
 - If a MOSFET does not have any BPDs to begin with, then stacking faults cannot nucleate and grow, and bipolar degradation will not occur
 - Therefore, <u>reducing occurrence of and screening out BPDs</u> are very important for 3rd quadrant reliability!
- Reliability implications:
 - Literature evidence largely agrees that bipolar instability cannot be accelerated
 - No known acceleration factors
 - No known predictive lifetime model
 - Fortunately, most or all failures occur in <~100 hrs BDOL stress
 - Bipolar stability is an early life failure mechanism, not wear-out
 - To ensure low PPM and ELRF, need to rely heavily on:
 - Testing large sample sizes
 - Testing large devices
 - > Testing higher voltage devices
 - > Aggressive and state-of-the art screening of BPDs in production

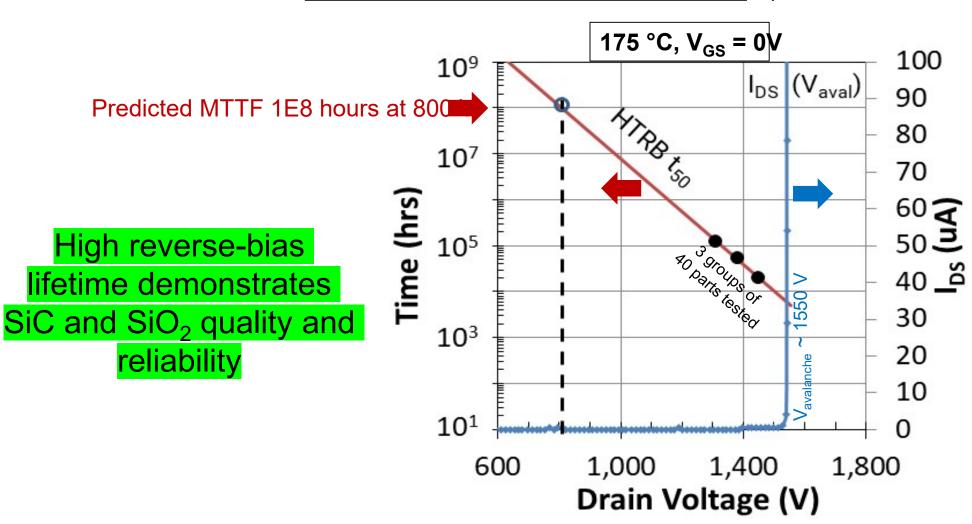
GATE OXIDE RELIABILITY

TIME DEPENDENT DIELECTRIC BREAKDOWN (TDDB) METHOD


1200V 13mohm Gen3 MOSFETs

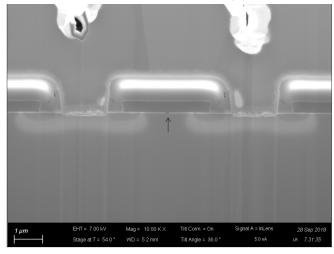
Similar results on 650V Gen3 MOSFETs

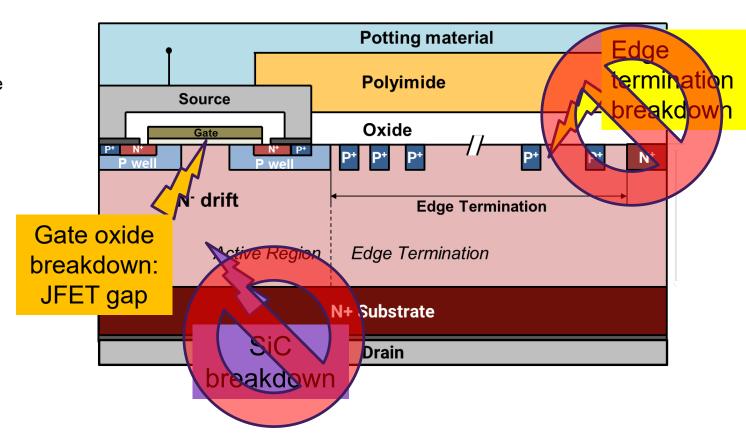
PHYSICS-BASED PREDICTIVE LIFETIME MODELING


- TDDB testing versus temperature and voltage used to construct predictive life $TF = A_0 \exp \left| \frac{\Delta H_0 - p_{eff} \cdot E}{K_R T} \right|$ model published by Joe McPherson (Texas Instruments Reliability Fellow): thermo-chemical model – the same model used for silicon MOSFETs!
- Resulting model parameters are similar to silicon
- Silicon carbide gate oxide reliability on planar MOSFETs is comparable to silicon MOSFETs at the same electric field

REVERSE BIAS RELIABILITY (HTRB)

ACCELERATED LIFE TEST HIGH TEMPERATURE REVERSE BIAS (ALT-HTRB)


1200V 75mohm G3 MOSFETs (C3M0075120D)


ACCELERATED LIFE TEST HIGH TEMPERATURE REVERSE BIAS

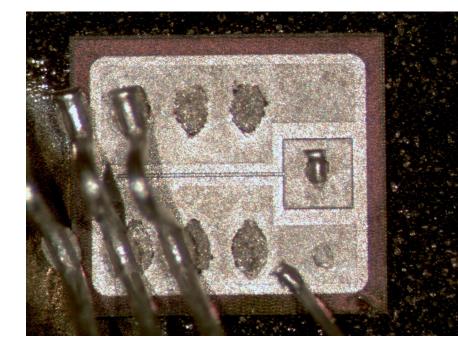
(ALT-HTRB)

 For Wolfspeed MOSFETs, physical failure analysis showed that the failures are gate oxide breakdown in the active area, in the JFET gap where the oxide electric field is highest

- Failure analysis found <u>no</u> evidence of:
 - Edge termination breakdown or
 - SiC breakdown
- Gate oxide wear-out models can be used for lifetime prediction

HUMIDITY RELATED RELIABILITY

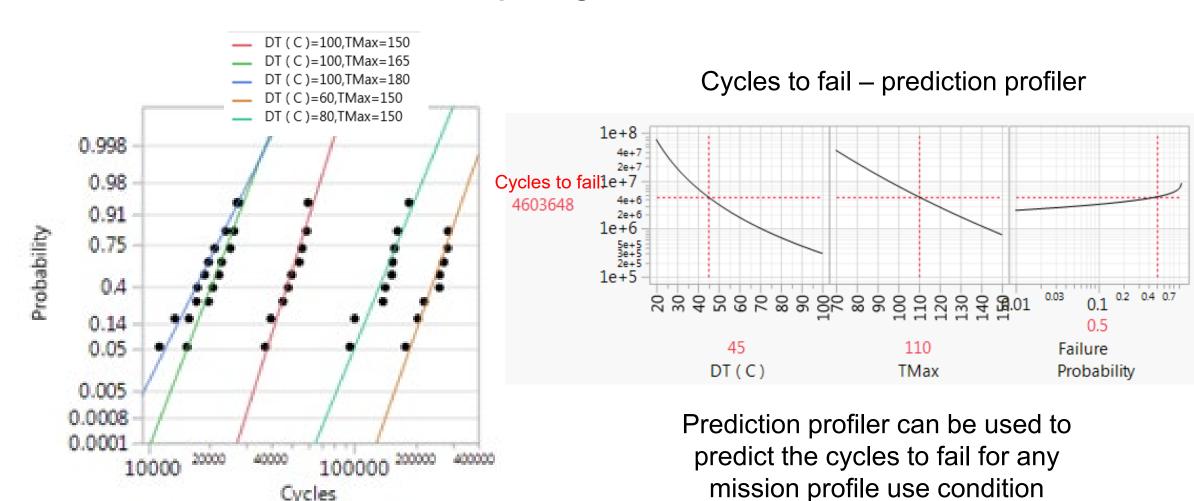
HUMIDITY RELATED RELIABILITY



- Humidity related reliability is a standard qualification test in all industry standard guidelines
- Wolfspeed E-Series devices have passed 85C/85%RH lifetime testing, with no evidence of corrosion:
 - Gen3 900 V MOSFETs
 - Gen4 1200 V Schottky diodes
- Acceleration factors for THB for SiC have not yet been established, but they are probably similar to those for Si devices, because the metals and dielectrics are similar:
 - Humidity: Peck's model (power law in RH)
 - Temperature: Arrhenius thermal activation
- With good passivation and device design, humidity related reliability of SiC is excellent
 - Inferior passivation films, defects and contamination can lead to issues

PACKAGING RELIABILITY

PACKAGING RELIABILITY: POWER CYCLING


- Power cycling tests wire bond thermomechanical fatigue wear-out
- Use "LESIT model" as described in this paper and others:
 - Held, M. et al., (1997). "Fast Power cycling test of IGBT modules in traction application." Proc. Power Conversion and Drive Systems. 425 - 430 vol.1. 10.1109/PEDS.1997.618742
 - Model consists of:
 - Arrhenius activation energy term for Tm (max junction temperature)
 - > Power law term for ΔTJ : the difference in max and min temperature during the power cycles: $\Delta TJ = Tjmax Tjmin$
- Power cycling is a property of the die metallization and wire bond
- Not unique to SiC: similar to what happens in Si IGBTs and modules

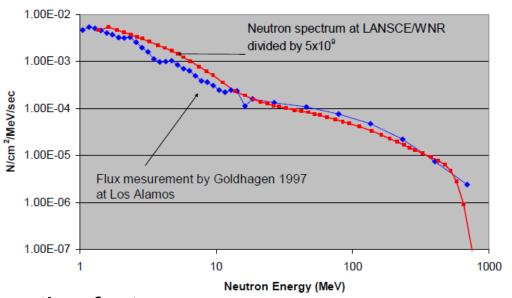
$$Nf = A \cdot \Delta Tj^{\alpha} \cdot exp\left(\frac{Q}{R \cdot Tm}\right)$$

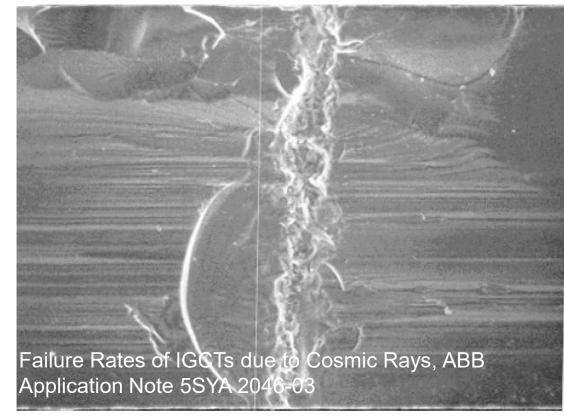
POWER CYCLING

1200V 75 mOhm, Wolfspeed Gen3 MOSFET Plastic overmold packaged C3M0075120K

Cycles

POWER CYCLING LIFETIME PREDICTIONS FOR EXAMPLE OPERATING CONDITIONS


ΔTJ (°C)	Tjmax (°C)	Cumulative probability	Cycle lifetime prediction	ΔTJ (°C)	Tjmax (°C)	Cumulative probability	Cycle lifetime prediction	ΔTJ (°C)	Tjmax (°C)	Cumulative probability	Cycle lifetime prediction
25	95	0.01	38558536	35	95	0.01	12328957	45	95	0.01	5260910
25	95	0.10	51560476	35	95	0.10	16486281	45	95	0.10	7034889
25	95	0.50	73639345	35	95	0.50	23545923	45	95	0.50	10047321
25	110	0.01	17667390	35	110	0.01	5649086	45	110	0.01	2410531
25	110	0.10	23624834	35	110	0.10	7553958	45	110	0.10	3223362
25	110	0.50	33741297	35	110	0.50	10788661	45	110	0.50	4603648
25	125	0.01	8585458	35	125	0.01	2745170	45	125	0.01	1171396
25	125	0.10	11480475	35	125	0.10	3670842	45	125	0.10	1566391
25	125	0.50	16396564	35	125	0.50	5242744	45	125	0.50	2237140


COSMIC RAY / NEUTRONS / SEB

TERRESTRIAL NEUTRONS

- Failure rate is constant with time (FIT): fails per billion device hours)
- Failures are abrupt with very little sign of degradation prior to failure
- Modeling determined empirically at neutron beam facilities to simulate the effect of terrestrial neutrons:

Neutron Flux at Los Alamos and LANSCE/WNR

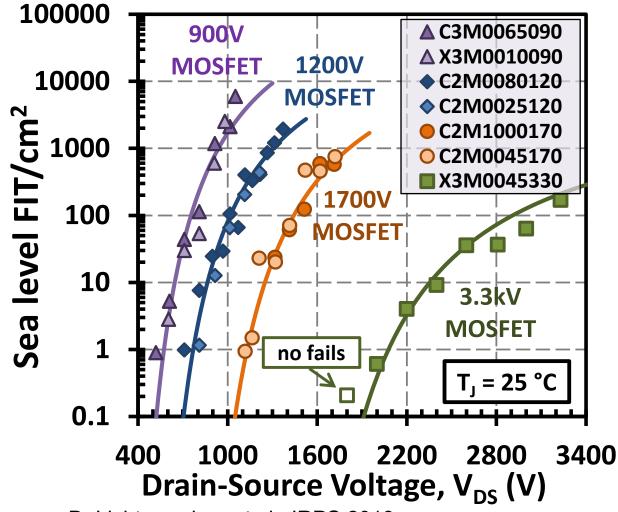
A molten channel through a silicon device created by a charge avalanche triggered by incident cosmic rays during blocking.

Accelerating factors:

- VDS
- Temperature (negative colder is worse!)

$$\lambda = C_3 \exp \left(\frac{C_2}{C_1 - V} \right) \cdot \exp \left(\frac{T_0 - T}{C_4} \right) \cdot \exp \left(\frac{1 - \left(1 - \frac{n}{C_5} \right)}{C_6} \right)$$
logo is a trademark of Wolfspeed, Inc.

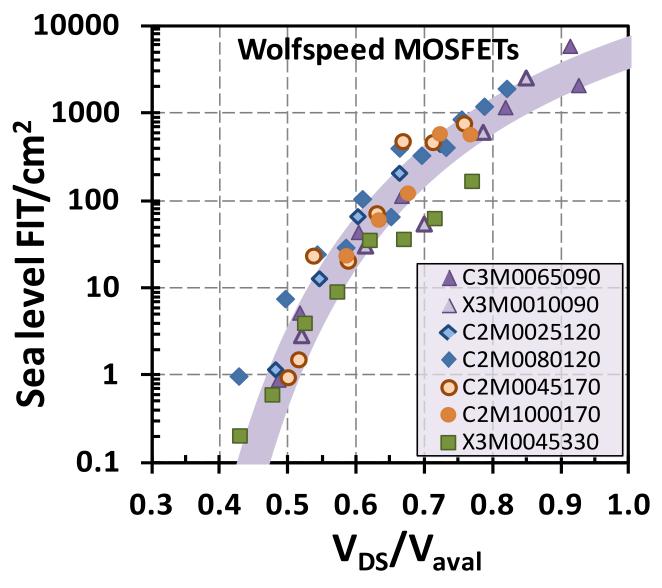
© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.


* All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

* All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed®. Inc.

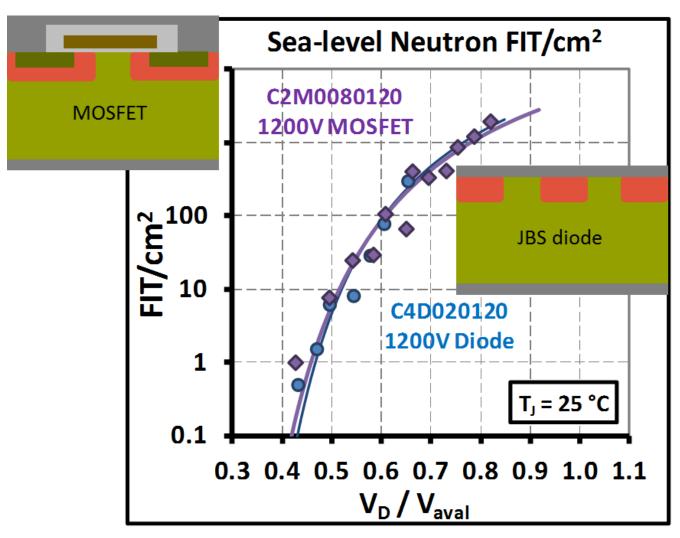
TERRESTRIAL NEUTRONS

- Wolfspeed SiC MOSFET FIT rates: scaling by active area
- Failure rate increases proportionally with device area
- Failure rate decreases as voltage rating increases
- \bullet FIT/cm² vs V_{DS} for Wolfspeed MOSFETs


900V 65 mohm 900V 10 mohm 1200V 80 mohm 1200V 25 mohm 1700V 1000 mohm 1700V 45 mohm 3.3kV 45 mohm

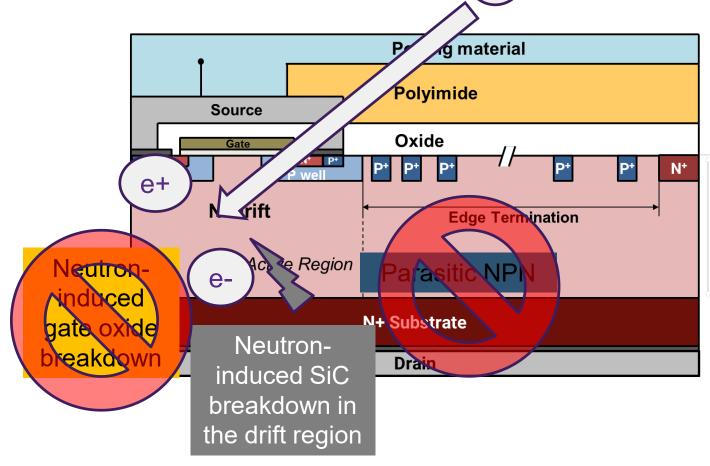
D. Lichtenwalner et al., IRPS 2018

TERRESTRIAL NEUTRONS


- All device FIT rates scale similarly with active area & drift field (relative to avalanche)
- Active area & drift design can be tailored to meet application-specific system lifetime requirements

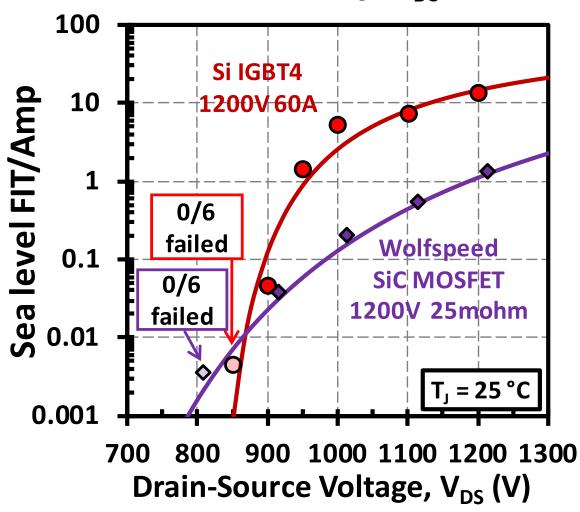
D. Lichtenwalner et al., IRPS 2018

TERRESTRIAL NEUTRONS: MOSFETS AND DIODES


- MOSFETs and diodes show the same neutron reliability:
- Active area & drift effects dominate reliability
- Failure analysis shows no indication of MOSFET parasitic NPN turn-on or gate oxide breakdown

D. Lichtenwalner et al., IRPS 2018

TERRESTRIAL NEUTRONS ACTUAL FAILURE MECHANI(n)


- Only drift-related breakdown is observed
- No gate oxide breakdown
- No parasitic
 NPN turn-on

TERRESTRIAL NEUTRONS: SIC VS. SI

- Si IGBTs show sharper failure onset, but higher max failure rate
- Both the SiC & Si parts may require a VDS derating, but SiC is more immune to VDS overshoot

SiC MOSFET has 10X lower FIT rate at high V_{DS}

D. Lichtenwalner et al., IRPS 2018

GATE VOLTAGE HAS NO EFFECT ON NEUTRON FIT RATE

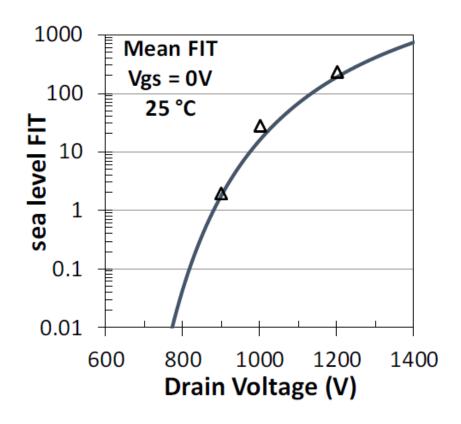


Fig. 1. Mean FIT versus V_{DS} for Wolfspeed G3 1200V 16mohm SiC MOSFETs, with $V_{GS} = 0V$. FIT rate is strongly dependent on the V_{DS} value.

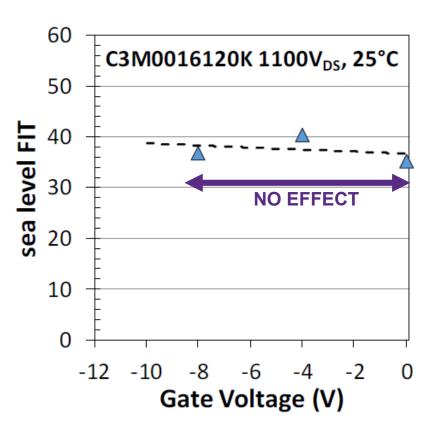


Fig. 2. Mean FIT versus V_{GS} for Wolfspeed G3 1200V 16m SiC MOSFETs, with $V_{DS} = 1100$ V. FIT rate is weakly dependent on the V_{GS} value.

D. J. Lichtenwalner et al., Wolfspeed, ECSRCM 2021 conference

PRODUCT QUALIFICATION

TYPICAL PRODUCT QUALIFICATION

Stress	Abrv	Sample Size Per Lot	# of Lots	Reference (current revision)	Additional Requirements	Accept on # Failed
High Temperature Reverse Bias	HTRB	77	3	MIL-STD-750-1 M1038 Method A	1000 hours at VDSmax and Tcmax	0
High Temperature Gate Bias	HTGB	77 each Vgs>0 and Vgs<0	3	JESD22 A-108	1000 hours at VGSmax and VGSmin and Tcmax	0
Temperature Cycling	TC	77	3	JESD22 A-104	1000 cycles Ta_max/Ta_min	0
Unbiased Highly Accelerated Stress Test	UHAST	77	3	JESD22 A-118	96 hours at 130 °C and 85% RH	0
High Humidity High Temp. Reverse Bias	H3TRB	77	3	JESD22 A-101	1000 hours at 85 °C, 85% RH with device reverse biased to 100 V	0
Intermittent Operational Life	IOL	77	3	MIL-STD-750 Method 1037	6000 cycles, 5 minutes on / 5 minutes off, devices powered to ensure DTJ ≥ 100 °C	0
Destructive Physical Analysis	DPA	2	3	AEC-Q101-004 Section 4	Random sample of parts that have successfully completed H3TRB and TC	0

TYPICAL THB-80 ASSESSMENT

Stress	Abrv	<u>-</u>		t on #	Reference (current revision)	Additional Requirements
Temperature- Humidity-Bias at 80% of Rated Voltage	THB-80	77	3	0	NA	1000 hours at 85 °C, 85% RH with device reverse biased to 80% of rated voltage

METHOD TO ASSESS A MISSION PROFILE

Automotive Electronics Council

AEC - Q101 - Rev - E March 1, 2021

- Any mission profile can be evaluated using the operational conditions, known failure mechanisms and acceleration factors
- It can be assessed if the product qualification performed is sufficient to represent a lifetime test of the product in the application
- In most cases we have examined, the answer is: "Yes, it is!"

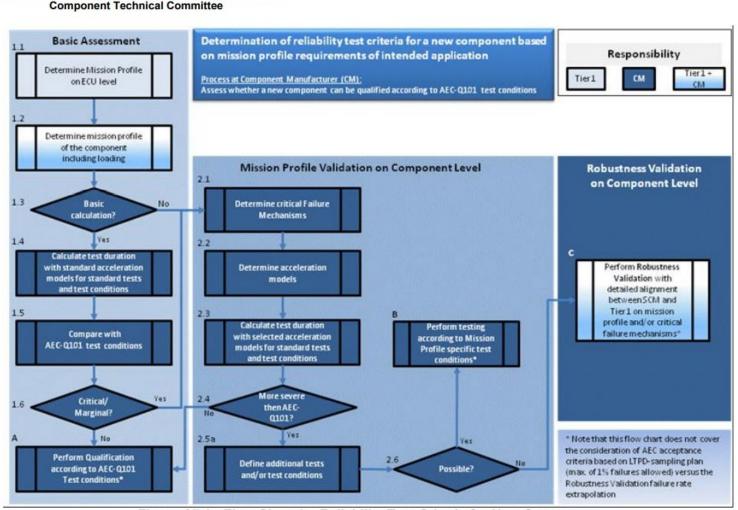
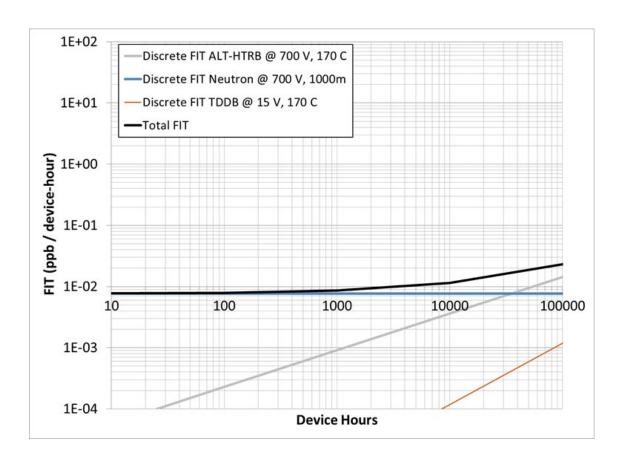



Figure A7.1: Flow Chart 1 – Reliability Test Criteria for New Component

PUTTING IT ALL TOGETHER – MISSION PROFILE AND RELIABILITY PREDICTION

- The mission profile can also be translated into a FIT rate versus time, using the operational conditions, known failure mechanisms and acceleration factors
- This kind of computation can be very illustrative and can assist with system level reliability assessments

FIELD RELIABILITY

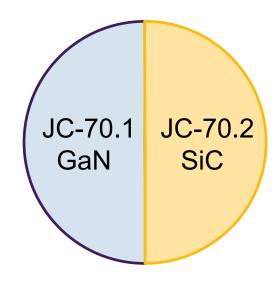
WOLFSPEED POWER FIELD RELIABILITY (THRU APR 2021)

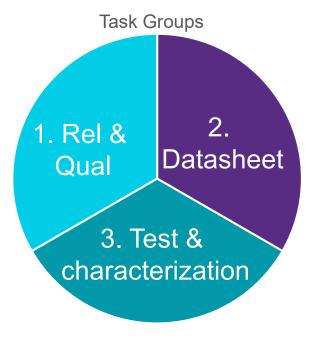
Technology	Fielded Device Hours (Billions)*	FIT Rate (valid field failures per billion device hours)**
C3Dxxx060 Diode	6282	0.04
C4Dxxx120 Diode	1096	0.16
C6Dxxx120 Diode	2.16	1.85
C2M MOSFET	202	2.14
C3M MOSFET	99	1.21
E3M Automotive MOSFET	1.19	0* (no reported field failures)

^{• *}Calculated today's date minus confirmed ship date minus 90 days (allowing for time to put into service)

^{* 12} hours per day

^{• **}Calculated as: 2 times the number of valid field failures (excludes engineering evaluations, asreceived visual defect escapes or issues, as-received test escapes, packaging and assembly quality issues) divided by fielded device hours; includes an additional factor for statistical confidence margin


INDUSTRY CONSORTIA GUIDELINES AND STANDARDS


INDUSTRY CONSORTIA

Consortium	Abbreviation
Joint Electron Device Engineering Council	JEDEC
Automotive Electronics Council	AEC
International Electrotechnical Commission	IEC
Japan Electronics and Information Technology Association	JEITA

JEDEC

- JC-70 committee formed to create guidelines (JEPs) and standards (JESDs) for power electronic conversion semiconductors (PECS)
- Each subcommittee has 3 task groups (TGs)
- TG702_1: SiC reliability and qualification
 - Kicked off activities at WIPDA 2017
 - Charter established, Teams formed to work on guidelines first, to be followed by standards
 - Currently > 80 members from >36 member companies + SMEs
 - Contact me if interested in participating!
- Task groups are open to paid member companies
 - Also welcome participation from subject matter experts from non-member entities, such as academia
- More guidelines and standards are under development!

PUBLISHED: NEW JEDEC GUIDELINE ON BTI FOR SIC MOSFETS

JEDEC PUBLICATION

Guideline for evaluating Bias
Temperature Instability of Silicon
Carbide Metal-Oxide-Semiconductor
Devices for Power Electronic
Conversion

JEP184

MARCH 2021

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

CONCLUSION

CONCLUSION

- SiC power devices have some unique reliability considerations in addition to Si power devices
- · Reliability assessments need to be holistic, comprehensive and specific
- The SiC failure mechanisms have been identified and testing methods have been developed, but more work needs to be done
- Successful product qualifications and field reliability show that the reliability science is paying off, and SiC is ready for large volume manufacturing for high reliability applications the future is now!
- Industry-wide reliability guidelines and standards are being actively developed

"We harness the power of Silicon Carbide to change the world for the better."

THANK YOU